| 1 | //***************************************************************************** |
|---|
| 2 | // DISCLAIMER OF LIABILITY |
|---|
| 3 | // |
|---|
| 4 | // This file contains proprietary and confidential information of |
|---|
| 5 | // Xilinx, Inc. ("Xilinx"), that is distributed under a license |
|---|
| 6 | // from Xilinx, and may be used, copied and/or disclosed only |
|---|
| 7 | // pursuant to the terms of a valid license agreement with Xilinx. |
|---|
| 8 | // |
|---|
| 9 | // XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION |
|---|
| 10 | // ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER |
|---|
| 11 | // EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT |
|---|
| 12 | // LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT, |
|---|
| 13 | // MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx |
|---|
| 14 | // does not warrant that functions included in the Materials will |
|---|
| 15 | // meet the requirements of Licensee, or that the operation of the |
|---|
| 16 | // Materials will be uninterrupted or error-free, or that defects |
|---|
| 17 | // in the Materials will be corrected. Furthermore, Xilinx does |
|---|
| 18 | // not warrant or make any representations regarding use, or the |
|---|
| 19 | // results of the use, of the Materials in terms of correctness, |
|---|
| 20 | // accuracy, reliability or otherwise. |
|---|
| 21 | // |
|---|
| 22 | // Xilinx products are not designed or intended to be fail-safe, |
|---|
| 23 | // or for use in any application requiring fail-safe performance, |
|---|
| 24 | // such as life-support or safety devices or systems, Class III |
|---|
| 25 | // medical devices, nuclear facilities, applications related to |
|---|
| 26 | // the deployment of airbags, or any other applications that could |
|---|
| 27 | // lead to death, personal injury or severe property or |
|---|
| 28 | // environmental damage (individually and collectively, "critical |
|---|
| 29 | // applications"). Customer assumes the sole risk and liability |
|---|
| 30 | // of any use of Xilinx products in critical applications, |
|---|
| 31 | // subject only to applicable laws and regulations governing |
|---|
| 32 | // limitations on product liability. |
|---|
| 33 | // |
|---|
| 34 | // Copyright 2006, 2007, 2008 Xilinx, Inc. |
|---|
| 35 | // All rights reserved. |
|---|
| 36 | // |
|---|
| 37 | // This disclaimer and copyright notice must be retained as part |
|---|
| 38 | // of this file at all times. |
|---|
| 39 | //***************************************************************************** |
|---|
| 40 | // ____ ____ |
|---|
| 41 | // / /\/ / |
|---|
| 42 | // /___/ \ / Vendor: Xilinx |
|---|
| 43 | // \ \ \/ Version: 3.6 |
|---|
| 44 | // \ \ Application: MIG |
|---|
| 45 | // / / Filename: ddr2_phy_ctl_io.v |
|---|
| 46 | // /___/ /\ Date Last Modified: $Date: 2010/06/29 12:03:43 $ |
|---|
| 47 | // \ \ / \ Date Created: Thu Aug 24 2006 |
|---|
| 48 | // \___\/\___\ |
|---|
| 49 | // |
|---|
| 50 | //Device: Virtex-5 |
|---|
| 51 | //Design Name: DDR2 |
|---|
| 52 | //Purpose: |
|---|
| 53 | // This module puts the memory control signals like address, bank address, |
|---|
| 54 | // row address strobe, column address strobe, write enable and clock enable |
|---|
| 55 | // in the IOBs. |
|---|
| 56 | //Reference: |
|---|
| 57 | //Revision History: |
|---|
| 58 | // Rev 1.1 - To fix CR 540201, S attribute is added for CS, CKE and ODT |
|---|
| 59 | // module (FDCPE) instances. PK. 01/08/10 |
|---|
| 60 | //***************************************************************************** |
|---|
| 61 | |
|---|
| 62 | `timescale 1ns/1ps |
|---|
| 63 | |
|---|
| 64 | module ddr2_phy_ctl_io # |
|---|
| 65 | ( |
|---|
| 66 | // Following parameters are for 72-bit RDIMM design (for ML561 Reference |
|---|
| 67 | // board design). Actual values may be different. Actual parameters values |
|---|
| 68 | // are passed from design top module dram module. Please refer to |
|---|
| 69 | // the dram module for actual values. |
|---|
| 70 | parameter BANK_WIDTH = 2, |
|---|
| 71 | parameter CKE_WIDTH = 1, |
|---|
| 72 | parameter COL_WIDTH = 10, |
|---|
| 73 | parameter CS_NUM = 1, |
|---|
| 74 | parameter TWO_T_TIME_EN = 0, |
|---|
| 75 | parameter CS_WIDTH = 1, |
|---|
| 76 | parameter ODT_WIDTH = 1, |
|---|
| 77 | parameter ROW_WIDTH = 14, |
|---|
| 78 | parameter DDR_TYPE = 1 |
|---|
| 79 | ) |
|---|
| 80 | ( |
|---|
| 81 | input clk0, |
|---|
| 82 | input clk90, |
|---|
| 83 | input rst0, |
|---|
| 84 | input rst90, |
|---|
| 85 | input [ROW_WIDTH-1:0] ctrl_addr, |
|---|
| 86 | input [BANK_WIDTH-1:0] ctrl_ba, |
|---|
| 87 | input ctrl_ras_n, |
|---|
| 88 | input ctrl_cas_n, |
|---|
| 89 | input ctrl_we_n, |
|---|
| 90 | input [CS_NUM-1:0] ctrl_cs_n, |
|---|
| 91 | input [ROW_WIDTH-1:0] phy_init_addr, |
|---|
| 92 | input [BANK_WIDTH-1:0] phy_init_ba, |
|---|
| 93 | input phy_init_ras_n, |
|---|
| 94 | input phy_init_cas_n, |
|---|
| 95 | input phy_init_we_n, |
|---|
| 96 | input [CS_NUM-1:0] phy_init_cs_n, |
|---|
| 97 | input [CKE_WIDTH-1:0] phy_init_cke, |
|---|
| 98 | input phy_init_data_sel, |
|---|
| 99 | input [CS_NUM-1:0] odt, |
|---|
| 100 | output [ROW_WIDTH-1:0] ddr_addr, |
|---|
| 101 | output [BANK_WIDTH-1:0] ddr_ba, |
|---|
| 102 | output ddr_ras_n, |
|---|
| 103 | output ddr_cas_n, |
|---|
| 104 | output ddr_we_n, |
|---|
| 105 | output [CKE_WIDTH-1:0] ddr_cke, |
|---|
| 106 | output [CS_WIDTH-1:0] ddr_cs_n, |
|---|
| 107 | output [ODT_WIDTH-1:0] ddr_odt |
|---|
| 108 | ); |
|---|
| 109 | |
|---|
| 110 | reg [ROW_WIDTH-1:0] addr_mux; |
|---|
| 111 | reg [BANK_WIDTH-1:0] ba_mux; |
|---|
| 112 | reg cas_n_mux; |
|---|
| 113 | reg [CS_NUM-1:0] cs_n_mux; |
|---|
| 114 | reg ras_n_mux; |
|---|
| 115 | reg we_n_mux; |
|---|
| 116 | |
|---|
| 117 | |
|---|
| 118 | |
|---|
| 119 | //*************************************************************************** |
|---|
| 120 | |
|---|
| 121 | |
|---|
| 122 | |
|---|
| 123 | |
|---|
| 124 | // MUX to choose from either PHY or controller for SDRAM control |
|---|
| 125 | |
|---|
| 126 | generate // in 2t timing mode the extra register stage cannot be used. |
|---|
| 127 | if(TWO_T_TIME_EN) begin // the control signals are asserted for two cycles |
|---|
| 128 | always @(*)begin |
|---|
| 129 | if (phy_init_data_sel) begin |
|---|
| 130 | addr_mux = ctrl_addr; |
|---|
| 131 | ba_mux = ctrl_ba; |
|---|
| 132 | cas_n_mux = ctrl_cas_n; |
|---|
| 133 | cs_n_mux = ctrl_cs_n; |
|---|
| 134 | ras_n_mux = ctrl_ras_n; |
|---|
| 135 | we_n_mux = ctrl_we_n; |
|---|
| 136 | end else begin |
|---|
| 137 | addr_mux = phy_init_addr; |
|---|
| 138 | ba_mux = phy_init_ba; |
|---|
| 139 | cas_n_mux = phy_init_cas_n; |
|---|
| 140 | cs_n_mux = phy_init_cs_n; |
|---|
| 141 | ras_n_mux = phy_init_ras_n; |
|---|
| 142 | we_n_mux = phy_init_we_n; |
|---|
| 143 | end |
|---|
| 144 | end |
|---|
| 145 | end else begin |
|---|
| 146 | always @(posedge clk0)begin // register the signals in non 2t mode |
|---|
| 147 | if (phy_init_data_sel) begin |
|---|
| 148 | addr_mux <= ctrl_addr; |
|---|
| 149 | ba_mux <= ctrl_ba; |
|---|
| 150 | cas_n_mux <= ctrl_cas_n; |
|---|
| 151 | cs_n_mux <= ctrl_cs_n; |
|---|
| 152 | ras_n_mux <= ctrl_ras_n; |
|---|
| 153 | we_n_mux <= ctrl_we_n; |
|---|
| 154 | end else begin |
|---|
| 155 | addr_mux <= phy_init_addr; |
|---|
| 156 | ba_mux <= phy_init_ba; |
|---|
| 157 | cas_n_mux <= phy_init_cas_n; |
|---|
| 158 | cs_n_mux <= phy_init_cs_n; |
|---|
| 159 | ras_n_mux <= phy_init_ras_n; |
|---|
| 160 | we_n_mux <= phy_init_we_n; |
|---|
| 161 | end |
|---|
| 162 | end |
|---|
| 163 | end |
|---|
| 164 | endgenerate |
|---|
| 165 | |
|---|
| 166 | //*************************************************************************** |
|---|
| 167 | // Output flop instantiation |
|---|
| 168 | // NOTE: Make sure all control/address flops are placed in IOBs |
|---|
| 169 | //*************************************************************************** |
|---|
| 170 | |
|---|
| 171 | // RAS: = 1 at reset |
|---|
| 172 | (* IOB = "FORCE" *) FDCPE u_ff_ras_n |
|---|
| 173 | ( |
|---|
| 174 | .Q (ddr_ras_n), |
|---|
| 175 | .C (clk0), |
|---|
| 176 | .CE (1'b1), |
|---|
| 177 | .CLR (1'b0), |
|---|
| 178 | .D (ras_n_mux), |
|---|
| 179 | .PRE (rst0) |
|---|
| 180 | ) /* synthesis syn_useioff = 1 */; |
|---|
| 181 | |
|---|
| 182 | // CAS: = 1 at reset |
|---|
| 183 | (* IOB = "FORCE" *) FDCPE u_ff_cas_n |
|---|
| 184 | ( |
|---|
| 185 | .Q (ddr_cas_n), |
|---|
| 186 | .C (clk0), |
|---|
| 187 | .CE (1'b1), |
|---|
| 188 | .CLR (1'b0), |
|---|
| 189 | .D (cas_n_mux), |
|---|
| 190 | .PRE (rst0) |
|---|
| 191 | ) /* synthesis syn_useioff = 1 */; |
|---|
| 192 | |
|---|
| 193 | // WE: = 1 at reset |
|---|
| 194 | (* IOB = "FORCE" *) FDCPE u_ff_we_n |
|---|
| 195 | ( |
|---|
| 196 | .Q (ddr_we_n), |
|---|
| 197 | .C (clk0), |
|---|
| 198 | .CE (1'b1), |
|---|
| 199 | .CLR (1'b0), |
|---|
| 200 | .D (we_n_mux), |
|---|
| 201 | .PRE (rst0) |
|---|
| 202 | ) /* synthesis syn_useioff = 1 */; |
|---|
| 203 | |
|---|
| 204 | // CKE: = 0 at reset |
|---|
| 205 | genvar cke_i; |
|---|
| 206 | generate |
|---|
| 207 | for (cke_i = 0; cke_i < CKE_WIDTH; cke_i = cke_i + 1) begin: gen_cke |
|---|
| 208 | (* IOB = "FORCE" *) (* S = "TRUE" *) FDCPE u_ff_cke |
|---|
| 209 | ( |
|---|
| 210 | .Q (ddr_cke[cke_i]), |
|---|
| 211 | .C (clk0), |
|---|
| 212 | .CE (1'b1), |
|---|
| 213 | .CLR (rst0), |
|---|
| 214 | .D (phy_init_cke[cke_i]), |
|---|
| 215 | .PRE (1'b0) |
|---|
| 216 | ) /* synthesis syn_useioff = 1 */; |
|---|
| 217 | end |
|---|
| 218 | endgenerate |
|---|
| 219 | |
|---|
| 220 | // chip select: = 1 at reset |
|---|
| 221 | // For unbuffered dimms the loading will be high. The chip select |
|---|
| 222 | // can be asserted early if the loading is very high. The |
|---|
| 223 | // code as is uses clock 0. If needed clock 270 can be used to |
|---|
| 224 | // toggle chip select 1/4 clock cycle early. The code has |
|---|
| 225 | // the clock 90 input for the early assertion of chip select. |
|---|
| 226 | |
|---|
| 227 | genvar cs_i; |
|---|
| 228 | generate |
|---|
| 229 | for(cs_i = 0; cs_i < CS_WIDTH; cs_i = cs_i + 1) begin: gen_cs_n |
|---|
| 230 | if(TWO_T_TIME_EN) begin |
|---|
| 231 | (* IOB = "FORCE" *) (* S = "TRUE" *) FDCPE u_ff_cs_n |
|---|
| 232 | ( |
|---|
| 233 | .Q (ddr_cs_n[cs_i]), |
|---|
| 234 | .C (clk0), |
|---|
| 235 | .CE (1'b1), |
|---|
| 236 | .CLR (1'b0), |
|---|
| 237 | .D (cs_n_mux[(cs_i*CS_NUM)/CS_WIDTH]), |
|---|
| 238 | .PRE (rst0) |
|---|
| 239 | ) /* synthesis syn_useioff = 1 */; |
|---|
| 240 | end else begin // if (TWO_T_TIME_EN) |
|---|
| 241 | (* IOB = "FORCE" *) (* S = "TRUE" *) FDCPE u_ff_cs_n |
|---|
| 242 | ( |
|---|
| 243 | .Q (ddr_cs_n[cs_i]), |
|---|
| 244 | .C (clk0), |
|---|
| 245 | .CE (1'b1), |
|---|
| 246 | .CLR (1'b0), |
|---|
| 247 | .D (cs_n_mux[(cs_i*CS_NUM)/CS_WIDTH]), |
|---|
| 248 | .PRE (rst0) |
|---|
| 249 | ) /* synthesis syn_useioff = 1 */; |
|---|
| 250 | end // else: !if(TWO_T_TIME_EN) |
|---|
| 251 | end |
|---|
| 252 | endgenerate |
|---|
| 253 | |
|---|
| 254 | // address: = X at reset |
|---|
| 255 | genvar addr_i; |
|---|
| 256 | generate |
|---|
| 257 | for (addr_i = 0; addr_i < ROW_WIDTH; addr_i = addr_i + 1) begin: gen_addr |
|---|
| 258 | (* IOB = "FORCE" *) FDCPE u_ff_addr |
|---|
| 259 | ( |
|---|
| 260 | .Q (ddr_addr[addr_i]), |
|---|
| 261 | .C (clk0), |
|---|
| 262 | .CE (1'b1), |
|---|
| 263 | .CLR (1'b0), |
|---|
| 264 | .D (addr_mux[addr_i]), |
|---|
| 265 | .PRE (1'b0) |
|---|
| 266 | ) /* synthesis syn_useioff = 1 */; |
|---|
| 267 | end |
|---|
| 268 | endgenerate |
|---|
| 269 | |
|---|
| 270 | // bank address = X at reset |
|---|
| 271 | genvar ba_i; |
|---|
| 272 | generate |
|---|
| 273 | for (ba_i = 0; ba_i < BANK_WIDTH; ba_i = ba_i + 1) begin: gen_ba |
|---|
| 274 | (* IOB = "FORCE" *) FDCPE u_ff_ba |
|---|
| 275 | ( |
|---|
| 276 | .Q (ddr_ba[ba_i]), |
|---|
| 277 | .C (clk0), |
|---|
| 278 | .CE (1'b1), |
|---|
| 279 | .CLR (1'b0), |
|---|
| 280 | .D (ba_mux[ba_i]), |
|---|
| 281 | .PRE (1'b0) |
|---|
| 282 | ) /* synthesis syn_useioff = 1 */; |
|---|
| 283 | end |
|---|
| 284 | endgenerate |
|---|
| 285 | |
|---|
| 286 | // ODT control = 0 at reset |
|---|
| 287 | genvar odt_i; |
|---|
| 288 | generate |
|---|
| 289 | if (DDR_TYPE > 0) begin: gen_odt_ddr2 |
|---|
| 290 | for (odt_i = 0; odt_i < ODT_WIDTH; odt_i = odt_i + 1) begin: gen_odt |
|---|
| 291 | (* IOB = "FORCE" *) (* S = "TRUE" *) FDCPE u_ff_odt |
|---|
| 292 | ( |
|---|
| 293 | .Q (ddr_odt[odt_i]), |
|---|
| 294 | .C (clk0), |
|---|
| 295 | .CE (1'b1), |
|---|
| 296 | .CLR (rst0), |
|---|
| 297 | .D (odt[(odt_i*CS_NUM)/ODT_WIDTH]), |
|---|
| 298 | .PRE (1'b0) |
|---|
| 299 | ) /* synthesis syn_useioff = 1 */; |
|---|
| 300 | end |
|---|
| 301 | end |
|---|
| 302 | endgenerate |
|---|
| 303 | |
|---|
| 304 | endmodule |
|---|